Extensions 1→N→G→Q→1 with N=C2xS3xD5 and Q=C22

Direct product G=NxQ with N=C2xS3xD5 and Q=C22
dρLabelID
S3xC23xD5120S3xC2^3xD5480,1207

Semidirect products G=N:Q with N=C2xS3xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xS3xD5):1C22 = D20:25D6φ: C22/C1C22 ⊆ Out C2xS3xD51204(C2xS3xD5):1C2^2480,1093
(C2xS3xD5):2C22 = D20:26D6φ: C22/C1C22 ⊆ Out C2xS3xD51204(C2xS3xD5):2C2^2480,1094
(C2xS3xD5):3C22 = D20:29D6φ: C22/C1C22 ⊆ Out C2xS3xD51204+(C2xS3xD5):3C2^2480,1095
(C2xS3xD5):4C22 = D20:13D6φ: C22/C1C22 ⊆ Out C2xS3xD51208-(C2xS3xD5):4C2^2480,1101
(C2xS3xD5):5C22 = D20:14D6φ: C22/C1C22 ⊆ Out C2xS3xD51208+(C2xS3xD5):5C2^2480,1102
(C2xS3xD5):6C22 = D12:14D10φ: C22/C1C22 ⊆ Out C2xS3xD51208+(C2xS3xD5):6C2^2480,1103
(C2xS3xD5):7C22 = D20:17D6φ: C22/C1C22 ⊆ Out C2xS3xD51208+(C2xS3xD5):7C2^2480,1111
(C2xS3xD5):8C22 = C15:2+ 1+4φ: C22/C1C22 ⊆ Out C2xS3xD51204(C2xS3xD5):8C2^2480,1125
(C2xS3xD5):9C22 = C2xD5xD12φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):9C2^2480,1087
(C2xS3xD5):10C22 = C2xS3xD20φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):10C2^2480,1088
(C2xS3xD5):11C22 = C2xC20:D6φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):11C2^2480,1089
(C2xS3xD5):12C22 = S3xD4xD5φ: C22/C2C2 ⊆ Out C2xS3xD5608+(C2xS3xD5):12C2^2480,1097
(C2xS3xD5):13C22 = C2xD5xC3:D4φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):13C2^2480,1122
(C2xS3xD5):14C22 = C2xS3xC5:D4φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):14C2^2480,1123
(C2xS3xD5):15C22 = C2xD10:D6φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):15C2^2480,1124

Non-split extensions G=N.Q with N=C2xS3xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xS3xD5).1C22 = F5xD12φ: C22/C1C22 ⊆ Out C2xS3xD5608+(C2xS3xD5).1C2^2480,995
(C2xS3xD5).2C22 = D60:3C4φ: C22/C1C22 ⊆ Out C2xS3xD5608+(C2xS3xD5).2C2^2480,997
(C2xS3xD5).3C22 = F5xC3:D4φ: C22/C1C22 ⊆ Out C2xS3xD5608(C2xS3xD5).3C2^2480,1010
(C2xS3xD5).4C22 = C3:D4:F5φ: C22/C1C22 ⊆ Out C2xS3xD5608(C2xS3xD5).4C2^2480,1012
(C2xS3xD5).5C22 = D5xC4oD12φ: C22/C2C2 ⊆ Out C2xS3xD51204(C2xS3xD5).5C2^2480,1090
(C2xS3xD5).6C22 = S3xC4oD20φ: C22/C2C2 ⊆ Out C2xS3xD51204(C2xS3xD5).6C2^2480,1091
(C2xS3xD5).7C22 = D20:24D6φ: C22/C2C2 ⊆ Out C2xS3xD51204(C2xS3xD5).7C2^2480,1092
(C2xS3xD5).8C22 = D5xD4:2S3φ: C22/C2C2 ⊆ Out C2xS3xD51208-(C2xS3xD5).8C2^2480,1098
(C2xS3xD5).9C22 = S3xD4:2D5φ: C22/C2C2 ⊆ Out C2xS3xD51208-(C2xS3xD5).9C2^2480,1099
(C2xS3xD5).10C22 = D30.C23φ: C22/C2C2 ⊆ Out C2xS3xD51208+(C2xS3xD5).10C2^2480,1100
(C2xS3xD5).11C22 = D5xQ8:3S3φ: C22/C2C2 ⊆ Out C2xS3xD51208+(C2xS3xD5).11C2^2480,1108
(C2xS3xD5).12C22 = S3xQ8:2D5φ: C22/C2C2 ⊆ Out C2xS3xD51208+(C2xS3xD5).12C2^2480,1109
(C2xS3xD5).13C22 = D20:16D6φ: C22/C2C2 ⊆ Out C2xS3xD51208-(C2xS3xD5).13C2^2480,1110
(C2xS3xD5).14C22 = C4:F5:3S3φ: C22/C2C2 ⊆ Out C2xS3xD51208(C2xS3xD5).14C2^2480,983
(C2xS3xD5).15C22 = (C4xS3):F5φ: C22/C2C2 ⊆ Out C2xS3xD51208(C2xS3xD5).15C2^2480,985
(C2xS3xD5).16C22 = C4xS3xF5φ: C22/C2C2 ⊆ Out C2xS3xD5608(C2xS3xD5).16C2^2480,994
(C2xS3xD5).17C22 = S3xC4:F5φ: C22/C2C2 ⊆ Out C2xS3xD5608(C2xS3xD5).17C2^2480,996
(C2xS3xD5).18C22 = C2xD6:F5φ: C22/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5).18C2^2480,1000
(C2xS3xD5).19C22 = S3xC22:F5φ: C22/C2C2 ⊆ Out C2xS3xD5608+(C2xS3xD5).19C2^2480,1011
(C2xS3xD5).20C22 = C22xS3xF5φ: C22/C2C2 ⊆ Out C2xS3xD560(C2xS3xD5).20C2^2480,1197
(C2xS3xD5).21C22 = S3xC2xC4xD5φ: trivial image120(C2xS3xD5).21C2^2480,1086
(C2xS3xD5).22C22 = S3xQ8xD5φ: trivial image1208-(C2xS3xD5).22C2^2480,1107

׿
x
:
Z
F
o
wr
Q
<